Presynaptic inhibition by GABA is mediated via two distinct GABA receptors with novel pharmacology.

نویسندگان

  • G Matthews
  • G S Ayoub
  • R Heidelberger
چکیده

Mechanisms of presynaptic inhibition were examined in giant presynaptic terminals of retinal bipolar neurons, which receive GABAergic feedback synapses from amacrine cells. Two distinct inhibitory actions of GABA are present in the terminals: a GABAA-like Cl conductance and a GABAB-like inhibition of voltage-dependent Ca current. Both of the receptors underlying these actions have unusual pharmacology that fits neither GABAA nor GABAB classifications. The GABA-activated Cl conductance was not blocked by the classical GABAA antagonist bicuculline, while the inhibition of Ca current was neither mimicked by the GABAB agonist baclofen nor blocked by the GABAB antagonist 2-hydroxysaclofen. The "GABAC" agonist cis-4-aminocrotonic acid (CACA) both activated the Cl conductance and inhibited Ca current, but the inhibition of Ca current was observed at much lower concentrations of CACA (< 1 microM) than was the activation of the Cl conductance (K1/2 = 50 microM). Thus, by the criterion of being insensitive to both bicuculline and baclofen, both GABA receptors qualify as potential GABAC receptors. However, it is argued on functional grounds that the two GABA receptors coupled to Cl channels and to Ca channels are best regarded as members of the GABAA and GABAB families, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extrasynaptic GABAA receptors: form, pharmacology, and function.

GABA is the principal inhibitory neurotransmitter in the CNS and acts via GABA(A) and GABA(B) receptors. Recently, a novel form of GABA(A) receptor-mediated inhibition, termed "tonic" inhibition, has been described. Whereas synaptic GABA(A) receptors underlie classical "phasic" GABA(A) receptor-mediated inhibition (inhibitory postsynaptic currents), tonic GABA(A) receptor-mediated inhibition re...

متن کامل

Elimination of the rho1 subunit abolishes GABA(C) receptor expression and alters visual processing in the mouse retina.

Inhibition is crucial for normal function in the nervous system. In the CNS, inhibition is mediated primarily by the amino acid GABA via activation of two ionotropic GABA receptors, GABA(A) and GABA(C). GABA(A) receptor composition and function have been well characterized, whereas much less is known about native GABA(C) receptors. Differences in molecular composition, anatomical distributions,...

متن کامل

Inhibition of GABA release by presynaptic ionotropic GABA receptors in hippocampal CA3.

Vesicular transmitter release can be regulated by transmitter-gated ion channels at presynaptic axon terminals. The central inhibitory transmitter GABA acts on such presynaptic ionotropic receptors in various cells, including inhibitory interneurons. Here we report that GABA-mediated postsynaptic inhibitory currents in CA3 pyramidal cells of rat hippocampal slices are suppressed by agonists of ...

متن کامل

GABA(B) receptor modulation of feedforward inhibition through hippocampal neurogliaform cells.

Feedforward inhibition of neurons is a fundamental component of information flow control in the brain. We studied the roles played by neurogliaform cells (NGFCs) of stratum lacunosum moleculare of the hippocampus in providing feedforward inhibition to CA1 pyramidal cells. We recorded from synaptically coupled pairs of anatomically identified NGFCs and CA1 pyramidal cells and found that, strikin...

متن کامل

Presynaptic Cell Dependent Modulation of Inhibition in Cortical Regions

Several lines of evidence suggest that the modulation of presynaptic GABA release is mediated by a variety of receptors including; presynaptic AMPA, cannabinoid, GABA(B), kainate, metabotropic glutamate, NMDA, and opioid receptors. The evidence supporting presynaptic modulation of inhibition is predominantly obtained from studying stimulus elicited, spontaneous or miniature synaptic events, whe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 14 3 Pt 1  شماره 

صفحات  -

تاریخ انتشار 1994